523 research outputs found

    Leucine-rich repeat kinase 2 mutations and Parkinson’s disease: three questions

    Get PDF
    Mutations in the gene encoding LRRK2 (leucine-rich repeat kinase 2) were first identified in 2004 and have since been shown to be the single most common cause of inherited Parkinson’s disease. The protein is a large GTP-regulated serine/threonine kinase that additionally contains several protein–protein interaction domains. In the present review, we discuss three important, but unresolved, questions concerning LRRK2. We first ask: what is the normal function of LRRK2? Related to this, we discuss the evidence of LRRK2 activity as a GTPase and as a kinase and the available data on protein–protein interactions. Next we raise the question of how mutations affect LRRK2 function, focusing on some slightly controversial results related to the kinase activity of the protein in a variety of in vitro systems. Finally, we discuss what the possible mechanisms are for LRRK2-mediated neurotoxicity, in the context of known activities of the protein

    Preclinical modeling of chronic inhibition of the Parkinson's disease associated kinase LRRK2 reveals altered function of the endolysosomal system in vivo

    Get PDF
    The most common mutation in the Leucine-rich repeat kinase 2 gene (LRRK2), G2019S, causes familial Parkinson's Disease (PD) and renders the encoded protein kinase hyperactive. While targeting LRRK2 activity is currently being tested in clinical trials as a therapeutic avenue for PD, to date, the molecular effects of chronic LRRK2 inhibition have not yet been examined in vivo. We evaluated the utility of newly available phospho-antibodies for Rab substrates and LRRK2 autophosphorylation to examine the pharmacodynamic response to treatment with the potent and specific LRRK2 inhibitor, MLi-2, in brain and peripheral tissue in G2019S LRRK2 knock-in mice. We report higher sensitivity of LRRK2 autophosphorylation to MLi-2 treatment and slower recovery in washout conditions compared to Rab GTPases phosphorylation, and we identify pS106 Rab12 as a robust readout of downstream LRRK2 activity across tissues. The downstream effects of long-term chronic LRRK2 inhibition in vivo were evaluated in G2019S LRRK2 knock-in mice by phospho- and total proteomic analyses following an in-diet administration of MLi-2 for 10 weeks. We observed significant alterations in endolysosomal and trafficking pathways in the kidney that were sensitive to MLi-2 treatment and were validated biochemically. Furthermore, a subtle but distinct biochemical signature affecting mitochondrial proteins was observed in brain tissue in the same animals that, again, was reverted by kinase inhibition. Proteomic analysis in the lung did not detect any major pathway of dysregulation that would be indicative of pulmonary impairment. This is the first study to examine the molecular underpinnings of chronic LRRK2 inhibition in a preclinical in vivo PD model and highlights cellular processes that may be influenced by therapeutic strategies aimed at restoring LRRK2 physiological activity in PD patients

    Hallmarks of neurodegenerative diseases

    Get PDF
    Decades of research have identified genetic factors and biochemical pathways involved in neurodegenerative diseases (NDDs). We present evidence for the following eight hallmarks of NDD: pathological protein aggregation, synaptic and neuronal network dysfunction, aberrant proteostasis, cytoskeletal abnormalities, altered energy homeostasis, DNA and RNA defects, inflammation, and neuronal cell death. We describe the hallmarks, their biomarkers, and their interactions as a framework to study NDDs using a holistic approach. The framework can serve as a basis for defining pathogenic mechanisms, categorizing different NDDs based on their primary hallmarks, stratifying patients within a specific NDD, and designing multi-targeted, personalized therapies to effectively halt NDDs

    CoExp: A Web Tool for the Exploitation of Co-expression Networks

    Get PDF
    Gene co-expression networks are a powerful type of analysis to construct gene groupings based on transcriptomic profiling. Co-expression networks make it possible to discover modules of genes whose mRNA levels are highly correlated across samples. Subsequent annotation of modules often reveals biological functions and/or evidence of cellular specificity for cell types implicated in the tissue being studied. There are multiple ways to perform such analyses with weighted gene co-expression network analysis (WGCNA) amongst one of the most widely used R packages. While managing a few network models can be done manually, it is often more advantageous to study a wider set of models derived from multiple independently generated transcriptomic data sets (e.g., multiple networks built from many transcriptomic sources). However, there is no software tool available that allows this to be easily achieved. Furthermore, the visual nature of co-expression networks in combination with the coding skills required to explore networks, makes the construction of a web-based platform for their management highly desirable. Here, we present the CoExp Web application, a user-friendly online tool that allows the exploitation of the full collection of 109 co-expression networks provided by the CoExpNets suite of R packages. We describe the usage of CoExp, including its contents and the functionality available through the family of CoExpNets packages. All the tools presented, including the web front- and back-ends are available for the research community so any research group can build its own suite of networks and make them accessible through their own CoExp Web application. Therefore, this paper is of interest to both researchers wishing to annotate their genes of interest across different brain network models and specialists interested in the creation of GCNs looking for a tool to appropriately manage, use, publish, and share their networks in a consistent and productive manner

    Whole-blood gene expression in pulmonary nontuberculous mycobacterial infection

    Get PDF
    The factors predisposing toward the development of pulmonary nontuberculous mycobacterial (pNTM) disease and influencing disease progression remain unclear. Impaired immune responses have been reported in individuals with pNTM disease, but data are limited and inconsistent. In this study, we sought to use gene expression profiling to examine the host response to pNTM disease. Microarray analysis of whole-blood gene expression was performed on 25 subjects with pNTM disease and 27 uninfected control subjects with respiratory disease. Gene expression results were compared with phenotypic variables and survival data. Compared with uninfected control subjects, pNTM disease was associated with downregulation of 213 transcripts enriched for terms related to T cell signaling, including IFNG. Reduced IFNG expression was associated with more severe computed tomography changes and impaired lung function. Mortality was associated with the expression of transcripts related to the innate immune response and inflammation, whereas transcripts related to T and B cell function were associated with improved survival. These findings suggest that pNTM disease is associated with an aberrant immune response, which may reflect an underlying propensity to infection or result from NTM infection itself. There were important differences in the immune response associated with survival and mortality in pNTM disease

    Mutations in LRRK2 linked to Parkinson disease sequester Rab8a to damaged lysosomes and regulate transferrin-mediated iron uptake in microglia

    Get PDF
    Mutations in leucine-rich repeat kinase 2 (LRRK2) cause autosomal dominant Parkinson disease (PD), while polymorphic LRRK2 variants are associated with sporadic PD. PD-linked mutations increase LRRK2 kinase activity and induce neurotoxicity in vitro and in vivo. The small GTPase Rab8a is a LRRK2 kinase substrate and is involved in receptor-mediated recycling and endocytic trafficking of transferrin, but the effect of PD-linked LRRK2 mutations on the function of Rab8a is poorly understood. Here, we show that gain-of-function mutations in LRRK2 induce sequestration of endogenous Rab8a to lysosomes in overexpression cell models, while pharmacological inhibition of LRRK2 kinase activity reverses this phenotype. Furthermore, we show that LRRK2 mutations drive association of endocytosed transferrin with Rab8a-positive lysosomes. LRRK2 has been nominated as an integral part of cellular responses downstream of proinflammatory signals and is activated in microglia in postmortem PD tissue. Here, we show that iPSC-derived microglia from patients carrying the most common LRRK2 mutation, G2019S, mistraffic transferrin to lysosomes proximal to the nucleus in proinflammatory conditions. Furthermore, G2019S knock-in mice show a significant increase in iron deposition in microglia following intrastriatal LPS injection compared to wild-type mice, accompanied by striatal accumulation of ferritin. Our data support a role of LRRK2 in modulating iron uptake and storage in response to proinflammatory stimuli in microglia

    Genetic analysis of amyotrophic lateral sclerosis identifies contributing pathways and cell types

    Get PDF
    Despite the considerable progress in unraveling the genetic causes of amyotrophic lateral sclerosis (ALS), we do not fully understand the molecular mechanisms underlying the disease. We analyzed genome-wide data involving 78,500 individuals using a polygenic risk score approach to identify the biological pathways and cell types involved in ALS. This data-driven approach identified multiple aspects of the biology underlying the disease that resolved into broader themes, namely, neuron projection morphogenesis, membrane trafficking, and signal transduction mediated by ribonucleotides. We also found that genomic risk in ALS maps consistently to GABAergic interneurons and oligodendrocytes, as confirmed in human single-nucleus RNA-seq data. Using two-sample Mendelian randomization, we nominated six differentially expressed genes (ATG16L2, ACSL5, MAP1LC3A, MAPKAPK3, PLXNB2, and SCFD1) within the significant pathways as relevant to ALS. We conclude that the disparate genetic etiologies of this fatal neurological disease converge on a smaller number of final common pathways and cell types

    A common genetic factor for Parkinson disease in ethnic Chinese population in Taiwan

    Get PDF
    BACKGROUND: Parkinson's disease (PD) is the most common neurodegenerative movement disorder, characterized clinically by resting tremor, bradykinesia, postural instability and rigidity. The prevalence of PD is approximately 2% of the population over 65 years of age and 1.7 million PD patients (age ≥ 55 years) live in China. Recently, a common LRRK2 variant Gly2385Arg was reported in ethnic Chinese PD population in Taiwan. We analyzed the frequency of this variant in our independent PD case-control population of Han Chinese from Taiwan. METHODS: 305 patients and 176 genetically unrelated healthy controls were examined by neurologists and the diagnosis of PD was based on the published criteria. The region of interest was amplified with standard polymerase chain reaction (PCR). PCR fragments then were directly sequenced in both forward and reverse directions. Differences in genotype frequencies between groups were assessed by the X(2 )test, while X(2 )analysis was used to test for the Hardy-Weinberg equilibrium. RESULTS: Of the 305 patients screened we identified 27 (9%) with heterozygous G2385R variant. This mutation was only found in 1 (0.5%) in our healthy control samples (odds ratio = 16.99, 95% CI: 2.29 to 126.21, p = 0.0002). Sequencing of the entire open reading frame of LRRK2 in G2385R carriers revealed no other variants. CONCLUSION: These data suggest that the G2385R variant contributes significantly to the etiology of PD in ethnic Han Chinese individuals. With consideration of the enormous and expanding aging Chinese population in mainland China and in Taiwan, this variant is probably the most common known genetic factor for PD worldwide

    In-cell NMR characterization of the secondary structure populations of a disordered conformation of α-Synuclein within E. coli cells

    Get PDF
    α-Synuclein is a small protein strongly implicated in the pathogenesis of Parkinson’s disease and related neurodegenerative disorders. We report here the use of in-cell NMR spectroscopy to observe directly the structure and dynamics of this protein within E. coli cells. To improve the accuracy in the measurement of backbone chemical shifts within crowded in-cell NMR spectra, we have developed a deconvolution method to reduce inhomogeneous line broadening within cellular samples. The resulting chemical shift values were then used to evaluate the distribution of secondary structure populations which, in the absence of stable tertiary contacts, are a most effective way to describe the conformational fluctuations of disordered proteins. The results indicate that, at least within the bacterial cytosol, α-synuclein populates a highly dynamic state that, despite the highly crowded environment, has the same characteristics as the disordered monomeric form observed in aqueous solution

    LRRK2 Phosphorylates Tubulin-Associated Tau but Not the Free Molecule: LRRK2-Mediated Regulation of the Tau-Tubulin Association and Neurite Outgrowth

    Get PDF
    Leucine-rich repeat kinase 2 (LRRK2), a large protein kinase containing multi-functional domains, has been identified as the causal molecule for autosomal-dominant Parkinson's disease (PD). In the present study, we demonstrated for the first time that (i) LRRK2 interacts with tau in a tubulin-dependent manner; (ii) LRRK2 directly phosphorylates tubulin-associated tau, but not free tau; (iii) LRRK2 phosphorylates tau at Thr181 as one of the target sites; and (iv) The PD-associated LRRK2 mutations, G2019S and I2020T, elevated the degree of tau-phosphorylation. These results provide direct proof that tau is a physiological substrate for LRRK2. Furthermore, we revealed that LRRK2-mediated phosphorylation of tau reduces its tubulin-binding ability. Our results suggest that LRRK2 plays an important role as a physiological regulator for phosphorylation-mediated dissociation of tau from microtubules, which is an integral aspect of microtubule dynamics essential for neurite outgrowth and axonal transport
    • …
    corecore